Why did it take me so long to add a burst height feature? (A feature that, to both me and many others alike, was obviously lacking.) Much of the NUKEMAP’s code is based on the calculations that went into making the famous Lovelace Foundation “Nuclear Bomb Effects Computer, ” which itself were based on equations in Samuel Glasstone’s classic The Effects of Nuclear Weapons. This circular slide rule has some wonderful retro charm, and is a useful way of boiling down a lot of nuclear effects data into a simple analog “computer.” However, like most nuclear effects calculations, it wasn’t really designed with the kind of visualization that the NUKEMAP had in mind. For something like the NUKEMAP, one wants to be able to plug in a yield and a “desired” overpressure (such as 5 psi), and get a measurement of the ground range of the effect as a result. But this isn’t how the Lovelace Computer works. Instead, you put in your kilotonnage and the distance you want to know the overpressure at, and in return you get a maximum overpressure in the form of pounds-per-square-inch. In other words, instead of asking, “what’s the distance for 5 psi for a 15 kiloton surface burst?, ” you are only allowed to ask, “if I was 2 miles from a 15 kiloton surface burst, what would the overpressure be?”

For surface bursts and a few low height (400 feet and under) airbursts, the Lovelace Foundation did, in a separate report, provide equations of the sort useful for the NUKEMAP, and the NUKEMAP’s code was originally based on these. But they didn’t allow for anything fancy with regards to arbitrary-height airbursts. They let one look for pressure information at “optimal” airburst heights, but did not let one actually set a specific airburst height. For awhile I thought this might just have been a strange oversight, but the more I dug into the issue, I realized this was probably because the physics of airbursts is hard.